Crystal Structure

Communications

Bis(ferrocenium) bis[tetrachloroantimonate(III)] trichloroantimony(III)

Ibrahim Abdul Razak, ${ }^{\text {a }}$ S. Shanmuga Sundara Raj, ${ }^{\text {a }}$ Hoong-Kun Fun, ${ }^{\text {a* }}$ Bohari M. Yamin ${ }^{\text {b }}$ and Norhayati Hashim ${ }^{\text {b }}$
${ }^{\text {a }}$ - ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\text {b }}$ Department of Chemistry, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Correspondence e-mail: hkfun@usm.my

Received 10 December 1999
Accepted 23 February 2000

In the title compound, $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]_{2}\left[\mathrm{SbCl}_{4}\right]_{2}\left[\mathrm{SbCl}_{3}\right]$, the cyclopentadienyl rings in both cations are parallel, with a nearly eclipsed conformation. The Sb^{3+} ions are coordinated by six Cl^{-}ions to form octahedral arrangements, of which two are slightly distorted. These octahedra form infinite chains along the c axis through $\mathrm{Cl}-\mathrm{Sb}-\mathrm{Cl}$ bridges.

Comment

A simple salt of ferrocenium tetrachloroantimonate, $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]\left[\mathrm{SbCl}_{4}\right]$, was obtained by mixing an equimolar mixture of ferrocene and antimony trichloride in chloroform (Yamin et al., 1996). However, the same reaction carried out in benzene yields the title compound, (I), for which the elemental analysis gives different results and in fact does not agree with the structural formula reported by Rheingold et al. (1979). Therefore, an X-ray crystallographic study of (I) was carried out and the results are presented herein.

$$
2 \mathrm{SbCl}_{4}^{-} \cdot \mathrm{SbCl}_{3}
$$

(I)

Unlike ferrocenium tetrachloroantimonate, compound (I) is a bis(ferrocenium) salt with two tetrachloroantimonate ions and one molecule of trichloroantimony(III). The conformations of the cyclopentadienyl (Cp) rings are close to eclipsed. The angle of twist of the Cp rings is defined as the torsion angle between a ring C atom, the two ring centres and the corresponding C atom on the opposite ring (Palenik, 1970). The average value of this angle of twist in (I) is 19.8° for Cp 1 and Cp 2 (rings $\mathrm{C} 1-\mathrm{C} 5$ and C6-C10, respectively), while the angle for Cp 3 and Cp 4 (rings $\mathrm{C} 11-\mathrm{C} 15$ and $\mathrm{C} 16-\mathrm{C} 20$,

Figure 1
The structure of (I) showing 50\% probability displacement ellipsoids and the atom-numbering scheme. H atoms are drawn as spheres of arbitrary radii.
respectively) is 2.9°. The Cp rings in both ferrocenium cations are planar and nearly parallel, with dihedral angles of 5.1 (7) (Cp1/Cp2) and $2.9(5)^{\circ}(\mathrm{Cp} 3 / \mathrm{Cp} 4)$. The $\mathrm{C}-\mathrm{C}, \mathrm{Fe}-\mathrm{C}$ and Fe -centroid distances in the ferrocenium moieties agree with the reported mean values (Orpen et al., 1989). The $\mathrm{Sb}-$ Cl bond lengths range between 2.350 (2) and 2.786 (2) \AA. Among the $\mathrm{Sb}-\mathrm{Cl}$ bonds, the long bonds involving $\mathrm{Cl} 1, \mathrm{Cl} 2$, $\mathrm{Cl} 4, \mathrm{Cl} 5$ and Cl 7 are bridging, whereas the short bonds involving the remaining Cl atoms are non-bridging (Porter \& Jacobson, 1970; Yamin et al., 1996).

In the crystal of (I), the Sb atoms are connected through $\mathrm{Sb}-\mathrm{Cl}-\mathrm{Sb}$ bridges. The Sb atoms are coordinated to six Cl^{-} ions to form octahedra. The equatorial positions of the coordination around Sb 1 are occupied by $\mathrm{Cl} 1, \mathrm{Cl} 2, \mathrm{Cl} 4$ and Cl 7 , around Sb 2 by $\mathrm{Cl} 5, \mathrm{Cl} 7, \mathrm{Cl} 8$ and Cl 2 , and around Sb 3 by Cl 1 , $\mathrm{Cl}^{5 i}$, Cl 10 and Cl 11 , while the axial positions are occupied by Cl 3 and $\mathrm{Cl} 2{ }^{\mathrm{i}}$ for $\mathrm{Sb} 1, \mathrm{Cl} 6$ and $\mathrm{Cl} 4^{i}$ for Sb 2 , and Cl 9 and $\mathrm{Cl} 5^{\mathrm{i}}$ for Sb3 [Fig. 2; symmetry codes: (i) $1-x, 2-y,-z$; (ii) x, y,

Figure 2
The infinite chains of octahedra in (I) viewed along the c axis. Symmetry codes are as given in the Comment.
$1+z$]. Two of the three octahedra, around Sb 1 and Sb 2 , are slightly distorted $[\mathrm{Cl} 4-\mathrm{Sb} 1-\mathrm{Cl} 7=163.82(8), \mathrm{Cl} 8-\mathrm{Sb} 2-\mathrm{Cl} 2=$ 164.86 (7) and $\mathrm{Cl} 6-\mathrm{Sb} 2-\mathrm{Cl}^{\mathrm{i}}=161.15$ (7) ${ }^{\circ}$]. The Sb 3 atom in the third octahedron acts as a bridge connecting two Cl2Cl 7 edge-shared octahedra through a $\mathrm{Cl} 1-\mathrm{Sb} 3-\mathrm{Cl} 5^{\mathrm{ii}}$ bridge. These arrangements form infinite chains of octahedra along the c axis. A weak $\mathrm{Cl} \cdots \mathrm{Cl}$ interaction connects the layers of these chains of octahedra along the b axis.

Other short contacts observed are: $\mathrm{Sb} 1 \cdots \mathrm{Sb} 1^{\mathrm{i}}=4.237$ (1), $\mathrm{Cl} 2 \cdots \mathrm{Sb} 1^{\mathrm{i}}=3.334$ (3), $\mathrm{Cl} 4 \cdots \mathrm{Sb} 2^{\mathrm{i}}=3.568$ (3), $\mathrm{Cl} 5 \cdots \mathrm{Sb} 3{ }^{\mathrm{i}}=$ 3.172 (2), $\mathrm{Cl} 5 \cdots \mathrm{Sb}^{\mathrm{iii}}=3.096$ (3) and $\mathrm{Cl} 3 \cdots \mathrm{Cl}^{\mathrm{iv}}=3.450$ (3) \AA [symmetry codes: (iii) $x, y,-1+z$, (iv) $1-x, 1-y,-z$].

Experimental

The title compound was prepared by mixing equimolar amounts of ferrocene and antimony trichloride in benzene. Dark-blue needlelike crystals were obtained after a few days.

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]_{2}\left[\mathrm{SbCl}_{4}\right]_{2}\left[\mathrm{SbCl}_{3}\right]$	$Z=2$
$M_{r}=1127.26$	$D_{x}=2.222 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=11.615(2) \AA$	Cell parameters from 41
$b=12.000(1) \AA$	reflections
$c=13.789(1) \AA$	$\theta=5.02-12.32^{\circ}$
$\alpha=80.03(1)^{\circ}$	$\mu=4.10 \mathrm{~mm}^{-1}$
$\beta=84.42(1)^{\circ}$	$T=293(2) \mathrm{K}$
$\gamma=62.92(1)^{\circ}$	Needle, dark blue
$V=1685.0(3) \AA^{3}$	$0.36 \times 0.18 \times 0.08 \mathrm{~mm}$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

Sb1-Cl3	2.367 (2)	Sb2-Cl5	2.786 (2)
$\mathrm{Sb} 1-\mathrm{Cl} 4$	2.407 (3)	Sb2-Cl2	3.180 (3)
Sb1-Cl1	2.538 (3)	Sb2-Cl4 ${ }^{\text {i }}$	3.568 (3)
$\mathrm{Sb} 1-\mathrm{Cl} 2$	2.683 (2)	Sb3-Cl9	2.386 (2)
Sb1-Cl7	3.225 (3)	Sb3-Cl11	2.387 (2)
$\mathrm{Sb} 1-\mathrm{Cl} 2{ }^{\text {i }}$	3.334 (3)	Sb3-Cl10	2.395 (3)
Sb2-Cl6	2.350 (2)	$\mathrm{Sb} 3-\mathrm{Cl}^{\text {ii }}$	3.096 (3)
Sb2-Cl8	2.386 (2)	Sb3-Cl5 ${ }^{\text {i }}$	3.172 (2)
Sb2-Cl7	2.523 (2)	Sb3-Cl1	3.212 (3)
$\mathrm{Cl} 1-\mathrm{Sb} 1-\mathrm{Cl} 2$	179.11 (10)	$\mathrm{Cl} 6-\mathrm{Sb} 2-\mathrm{Cl}^{4}$	161.15 (7)
$\mathrm{Cl} 4-\mathrm{Sb} 1-\mathrm{Cl} 7$	163.82 (8)	$\mathrm{Cl} 10-\mathrm{Sb} 3-\mathrm{Cl} 5{ }^{\text {ii }}$	174.37 (8)
$\mathrm{Cl} 3-\mathrm{Sb} 1-\mathrm{Cl} 2{ }^{\text {i }}$	173.24 (8)	$\mathrm{Cl} 9-\mathrm{Sb} 3-\mathrm{Cl} 5^{\text {i }}$	175.73 (8)
C17-Sb2-Cl5	171.34 (8)	Cl11-Sb3-Cl1	172.73 (8)
$\mathrm{Cl} 8-\mathrm{Sb} 2-\mathrm{Cl} 2$	164.86 (7)		

[^0]
Data collection

Siemens $P 4$ diffractometer	$R_{\text {int }}=0.046$
$\theta / 2 \theta$ scans	$\theta_{\max }=25^{\circ}$
Absorption correction: empirical	$h=-1 \rightarrow 13$
via ψ scans (XSCANS; Siemens,	$k=-13 \rightarrow 14$
$1994)$	$l=-16 \rightarrow 16$
$T_{\min }=0.320, T_{\max }=0.735$	3 standard reflections
6898 measured reflections	every 97 reflections
5935 independent reflections	intensity decay: $<3 \%$

5935 independent reflections 3378 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.085$
$S=0.81$
5935 reflections
325 parameters

$$
\begin{aligned}
& R_{\text {int }}=0.046 \\
& \theta_{\max }=25^{\circ} \\
& h=-1 \rightarrow 13 \\
& k=-13 \rightarrow 14 \\
& l=-16 \rightarrow 16 \\
& 3 \text { standard reflections } \\
& \text { every } 97 \text { reflections } \\
& \text { intensity decay: }<3 \%
\end{aligned}
$$

After checking their presence in the difference map, all H atoms were fixed geometrically and allowed to ride on their attached atoms. All C -H bonds were fixed at $0.98 \AA$, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 1990).

The authors would like to thank the Malaysian Government, Universiti Sains Malaysia and Universiti Kebangsaan Malaysia for research IRPA grants R\&D No. 305/PFIZIK/622004 and 03-02-02-005. SSSR thanks the Universiti Sains Malaysia for a Visiting Postdoctoral Fellowship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1355). Services for accessing these data are described at the back of the journal.

References

Orpen, G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. \& Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-83.

Palenik, J. (1970). Inorg. Chem. 9, 2424-2430.
Porter, S. K. \& Jacobson, R. A. (1970). J. Chem. Soc. A, pp. 1356-1359.
Rheingold, A. L., Landers, A. G., Dahlstrom, P. \& Zubieta, J. (1979). J. Chem. Soc. Chem. Commun. pp. 143-144.
Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Yamin, B. M., Fun, H.-K., Sivakumar, K., Yip, B.-C. \& Shawkataly, O. B. (1996). Acta Cryst. C52, 600-602.

[^0]: Symmetry codes: (i) $1-x, 2-y,-z$; (ii) $x, y, 1+z$.

